Show simple item record

dc.contributor.advisorSanhueza-Tohá, Magdalena
dc.coverage.spatialSantiago
dc.creatorVera-Buschmann, Jorge Alejandro
dc.date.accessioned2017-04-11T19:08:25Z
dc.date.available2017-04-11T19:08:25Z
dc.date.issued2015
dc.identifierhttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.identifier.urihttp://hdl.handle.net/10533/182431
dc.description.abstractNeurons from different memory-related mammalian brain regwns display intrinsicmaximal subthreshold voltage responses to oscillatory stimulation at theta frequencies(4-12Hz; theta resonance). This may contribute to tune and stabilize network oscillatory activity. However, the drop in input resistance (Rin) produced by synaptic bombardment in active networks predicts a loss of resonance impact on neuronal processing. To investigate wbether resonance drives rhythmic spiking in active networks we performed a comparative study of two resonant neuron populations with different Rin, pyramidal neuron from CAl hippocampus (CAlP, - 60 MΩ) and neurons from tbe anteriornucleous of the cortical amygdala (ACoN, - 160 MΩ) using rat brain slices, whole-cellrecordings and dynamic clamp. A hyperpolarization-activated cationic current (I in) contributed to subthreshold resonance in botb neuronal groups. Favored by the high R in, ftr also filtered perithreshold voltage oscillations in ACoN, tbus allowing the translation of resonance to spiking regimes even under recreated synaptic bombardment. In tum, CAlP neurons displayed a tunable mecbanism for resonance translation to spiking based on relative levels of a muscarine-sensitive potassium current (IM) and a persistent sodium current (INaP). Notably, we confirmed the prediction of RLC-filter theory that cbanges in Rin, due to synaptic bombardment modulate resonance frequency and strength.CAlP bave five-fold more INaP tban ACoN, increasing perithreshold impedance and tbuscompensating tbe low Rin. Therefore, neurons witb opposed Rin values implementdifferent strategies to effectively translate their frequency preference to spiking regimes. We present a novel aspect of neuronal resonance, consisting of a dynamic tunablemechanism for intrinsic frequency preference that depends on the level of networkactivity.
dc.language.isoeng
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.titleA biólogical context for theta-frequency neuronal resonance: a comparative study between cortical amygdala and hippocampal neurons
dc.typeTesis Doctorado
dc.description.degreeDoctor en Ciencias Mención Biología Molecular, Celular y Neurociencias
dc.contributor.institutionUniversidad de Chile
dc.description.statusTERMINADA
dc.country.isochi
dc.description.conicytprogramPFCHA-Becas
dc.description.pages214p.
dc.relation.projectidinstname: Conicyt
dc.relation.projectidreponame: Repositorio Digital RI2.0
dc.relation.setinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93488
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.date.start2014
dc.relation.programinfo:eu-repo/grantAgreement/PFCHA-Becas/RI20
dc.description.shortconicytprogramPFCHA-Becas
dc.type.tesisTesis
dc.type.openaireinfo:eu-repo/semantics/publishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record