Show simple item record

dc.creatorAstaburuaga, M Angélica
dc.creatorFernández-Jaña, Claudio Alonso
dc.creatorCharao, Ruy Coimbra
dc.creatorPerla-Menzala, Gustavo
dc.date.accessioned2019-05-27T19:26:41Z
dc.date.available2019-05-27T19:26:41Z
dc.date.issued2016es_CL
dc.identifier.urihttp://hdl.handle.net/10533/235712
dc.description.abstractLet h = (h1 h2 ) be a resonant solution of a linearly coupled system of perturbed Schr odinger equations on the half line[0;1), with Dirichlet boundary conditions at the origin. The function h is then a generalized eigenvector of the related Hamil- tonian system H that satis es an outgoing condition at in nity. Then Hh = k2h, where the resonance k2 is complex with Im k2 negative. The main goal of this work is to show that the pres- ence of resonance is manifested by an approximate exponential behaviour. Indeed since the outgoing condition rules out square integrability, we truncate h to an interval containing the support of the perturbation and show that when the resonance is near the real axis, the probability amplitude ⟨h; e�����iHth⟩ has a certain ex- ponential behaviour in time.es_CL
dc.language.isoenges_CL
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightsinfo:eu-repo/semantics/openAccesses_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.titleAlmost Exponential Decay For A Coupled System Of Schrodinger Equationses_CL
dc.typeManuscrito
dc.identifier.folio1141120es_CL
dc.description.pages18es_CL
dc.relation.projectidinfo:eu-repo/grantAgreement//1141120es_CL
dc.relation.setinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93482
dc.type.driverinfo:eu-repo/semantics/text


Files in this item

FilesSizeFormatView

There are no files associated with this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess