dc.creator | Astaburuaga, M Angélica | |
dc.creator | Fernández-Jaña, Claudio Alonso | |
dc.creator | Charao, Ruy Coimbra | |
dc.creator | Perla-Menzala, Gustavo | |
dc.date.accessioned | 2019-05-27T19:26:41Z | |
dc.date.available | 2019-05-27T19:26:41Z | |
dc.date.issued | 2016 | es_CL |
dc.identifier.uri | http://hdl.handle.net/10533/235712 | |
dc.description.abstract | Let h =
(h1
h2
)
be a resonant solution of a linearly
coupled system of perturbed Schr odinger equations on the half
line[0;1), with Dirichlet boundary conditions at the origin. The
function h is then a generalized eigenvector of the related Hamil-
tonian system H that satis es an outgoing condition at in nity.
Then Hh = k2h, where the resonance k2 is complex with Im k2
negative. The main goal of this work is to show that the pres-
ence of resonance is manifested by an approximate exponential
behaviour. Indeed since the outgoing condition rules out square
integrability, we truncate h to an interval containing the support
of the perturbation and show that when the resonance is near the
real axis, the probability amplitude ⟨h; e�����iHth⟩ has a certain ex-
ponential behaviour in time. | es_CL |
dc.language.iso | eng | es_CL |
dc.relation | instname: Conicyt | |
dc.relation | reponame: Repositorio Digital RI2.0 | |
dc.rights | info:eu-repo/semantics/openAccess | es_CL |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
dc.title | Almost Exponential Decay For A Coupled System Of Schrodinger Equations | es_CL |
dc.type | Manuscrito | |
dc.identifier.folio | 1141120 | es_CL |
dc.description.pages | 18 | es_CL |
dc.relation.projectid | info:eu-repo/grantAgreement//1141120 | es_CL |
dc.relation.set | info:eu-repo/semantics/dataset/hdl.handle.net/10533/93482 | |
dc.type.driver | info:eu-repo/semantics/text | |