Show simple item record

dc.creatorVergara-Aguilar, Vicente
dc.creatorZacher, Rico
dc.date.accessioned2021-08-23T22:58:45Z
dc.date.available2021-08-23T22:58:45Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10533/252399
dc.description.abstractWe consider nonlocal in time semilinear subdiffusion equations on a bounded domain, where the kernel in the integro-differential operator belongs to a large class, which covers many relevant cases from physics applications, in particular the important case of fractional dynamics. The elliptic operator in the equation is given in divergence form with bounded measurable coefficients. We prove a well-posedness result in the setting of bounded weak solutions and study the stability and instability of the zero function in the special case where the nonlinearity vanishes at 0. We also establish a blowup result for positive convex and superlinear nonlinearities.
dc.language.isoeng
dc.relation.urihttps://doi.org/10.1007/s00028-016-0370-2
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.titleStability, instability, and blowup for time fractional and other non-local in time semilinear subdiffusion equations
dc.typeArticulo
dc.description.conicytinstrumentRegular 2015
dc.identifier.folio1150230
dc.description.conicytprogramFONDECYT
dc.relation.contesthandle/10533/111557
dc.rights.driverinfo:eu-repo/semantics/article
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.title.journalJOURNAL OF EVOLUTION EQUATIONS
dc.relation.instrumenthandle/10533/111541
dc.relation.programhandle/10533/108045
dc.description.shortconicytprogramFONDECYT
dc.type.openaireinfo:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item

This item appears in the following Collection(s)

Show simple item record